64 research outputs found

    Regression on manifolds: Estimation of the exterior derivative

    Full text link
    Collinearity and near-collinearity of predictors cause difficulties when doing regression. In these cases, variable selection becomes untenable because of mathematical issues concerning the existence and numerical stability of the regression coefficients, and interpretation of the coefficients is ambiguous because gradients are not defined. Using a differential geometric interpretation, in which the regression coefficients are interpreted as estimates of the exterior derivative of a function, we develop a new method to do regression in the presence of collinearities. Our regularization scheme can improve estimation error, and it can be easily modified to include lasso-type regularization. These estimators also have simple extensions to the "large pp, small nn" context.Comment: Published in at http://dx.doi.org/10.1214/10-AOS823 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Inverse Optimization with Noisy Data

    Full text link
    Inverse optimization refers to the inference of unknown parameters of an optimization problem based on knowledge of its optimal solutions. This paper considers inverse optimization in the setting where measurements of the optimal solutions of a convex optimization problem are corrupted by noise. We first provide a formulation for inverse optimization and prove it to be NP-hard. In contrast to existing methods, we show that the parameter estimates produced by our formulation are statistically consistent. Our approach involves combining a new duality-based reformulation for bilevel programs with a regularization scheme that smooths discontinuities in the formulation. Using epi-convergence theory, we show the regularization parameter can be adjusted to approximate the original inverse optimization problem to arbitrary accuracy, which we use to prove our consistency results. Next, we propose two solution algorithms based on our duality-based formulation. The first is an enumeration algorithm that is applicable to settings where the dimensionality of the parameter space is modest, and the second is a semiparametric approach that combines nonparametric statistics with a modified version of our formulation. These numerical algorithms are shown to maintain the statistical consistency of the underlying formulation. Lastly, using both synthetic and real data, we demonstrate that our approach performs competitively when compared with existing heuristics
    • …
    corecore